DevOps for Unreal Engine

%’ make the builds go nyoom &7

POINT

Welcome!

e |'mJune (She/Her)

e | make plugins for Unreal Engine

e |do ahuge number of Unreal Engine builds across multiple
products, platforms and configurations

e Plus | need to run automation and Gauntlet tests for all of this

e Therefore, | need a very good DevOps pipeline for Unreal, so | can actually sustain all of
this development as one person

POINT

How this presentation is structured

e This presentation will be an iterative journey as we keep introducing more DevOps tools
to solve problems and make our lives easier.

e This means: you can adopt as little or as much of this as you want, in the order presented,
and get benefits along the way

e Each new tool solves more problems and lets us build and develop our Unreal Engine
projects faster!

e Everything here is free and open source

POINT

Unreal Engine Scripts

POINT

What are you using to build today?

e UnrealBuildTool?
e AvutomationTool?
e BuildCookRun?

Problems:

e Complex command lines with lots of flags

e Builds stuff in sequence, no running of jobs in parallel

e No tolerance for transient environmental failures

e Build failed2 Have to start the whole thing over again which can cost a lot of time
e How do you run your automation or Gauntlet tests?

POINT

Introducing: Unreal Engine Scripts

o PowerShell scripts that work on Windows and macOS
e Define your builds in JSON
e Specify automation tests and Gauntlet tests in JSON

e Support for different build variants (“distributions”)

Do a build with:

POINT

What does the JSON look like?

e Create afile called BuildConfig.json in the
root of the repository

e Assuming your project is at:

o MyGame/MyGame.uproject

e Probably the simplest definition you can
end up with

POINT

{

"Type": "Project"”,
"Distributions": [

["Development™]

"Name™: "Game",
"FolderName": "MyGame",
"ProjectName”: "MyGame",
"Build": {
"Editor™: {
"Target": "MyGameEditor"
}s
"Game": {
"Targets”: ["MyGame"],
"Platforms™: ["Win64"],
"Configurations™:
}

Other features of Unreal Engine Scripts

e Project builds support running Gauntlet & custom tests

e Plugins builds support running automation & custom tests

e Build for Client and Server configurations as well

e Can package your plugins for Marketplace Distribution and check compliance with Marketplace rules
e Can deploy games out to Steam for you, and/or run custom deployment scripts

e Format.ps]1 to automatically format your C++ code with clang-format

e Deals with a ton of environmental issues like file locks, mutexes, page file errors and other nonsense that
can cause temporary failures, and will automatically retry for you

POINT

Where can | get it?

https://src.redpoint.games/redpointgames /unreal-engine-scripts

More instructions on how to install and use it in your project can be found on that page.

POINT

https://src.redpoint.games/redpointgames/unreal-engine-scripts

Benefits so far

e Simplified build, test and deployment of your games and plugins
e More reliable builds locally and on our build servers

(don’t worry, this list will get longer as we go through the presentation)

POINT

Will this build things in parallel yet?

e Not quite, but it will in a moment
e Powered by BuildGraph
e But we currently only have one “node” (our local machine)

e To buildin parallel, we need a build server and multiple build machines

POINT

GitLab

POINT

Technically any build server will do

e You don't specifically need to use GitLab

e But Gitlab is the only build server that Unreal Engine Scripts currently has out-of-the-box
support for

e Unreal Engine Scripts has to know how to translate the BuildGraph graph into build jobs
on the build server

e We use Gitlab so that's the support we've written, but you could add support for Jenkins

or TeamCity or any build server that supports dynamic build pipelines, with just a litile bit
of PowerShell

POINT

GitLab is open source though

e This used to be an easier sell before they heavily limited their Saa$S offering
e Ifyou have 5 or fewer people on your team, Free SaaS$ offering might work for you

e Above 5 people it gets expensive fast though, so | would recommend self-hosting GitLab
if you can

o | self-hostin Kubernetes, but there are much more simple deployment options available
where you just need a Linux box somewhere

o Self-host instructions for Ubuntu: https: //about.gitlab.com/install /#ubuntu

POINT

https://about.gitlab.com/install/#ubuntu

What does this get us?

EOS Online Subsystem Q' Tip: Hover over a job to see the jobs it depands on Lo run.

Project information

-) Downstream
Repository %y WYU [Run

-y MR {51 Free
(‘,J S1Fr

Pipelines
Editor
Jobs

Schedules

7} Deployments

Setlings

51 Free

/ Lagacy SDK

| Server

) MR [4.27
®

ICJ Asgemble Host Project
o F

. .E.'I)III[JHQ UnrealEditor Mac o~ . Cleala.l‘.‘m-'_' Tes.'. Package
, Compile UnrealEditor Wing4 - . CIQH[E.'\'\"IIIEQ T.esl Package
1 .C.'Dlll[_rlle L:IIIQH[SHI"'\E 105 Developmeant o~ 7 Create Pec.kage

1 .C.'Dlll[_rlle L:IIIQH[SHI"'\E 105 Shipping

1 .C.'Dlll[_rlle L:IIIQH[SHI"'\E Mac Devalopment

1 .C.'Dlll[_rlle L:IIIQH[SHI"'\E Mac Shipping

1 C.'Dlllplle L.,IIIQ:dlSHI"‘\E Android Devalopment

, Compile LIIIQ:dlSHI"'\E Android Shipping

, Compile LIIIQ:dlSHI"'\E Linux Development

, Compile LIIIQ:dlSHI"'\E Linux Shipping

, Compile LIIIQ:dlSHI"'\E Wingd Development

, Compile UnrealGame Wing4 Shipping

y Zip Plugin

y Test Example Project

W

, Assemble Tast Mac Project

, Asgsemble Test WinBd Pr:

y Test Anti-Cheal EAC Hook:

inG4

What does this get us?

e Run massive amounts of jobs in parallel across
all our build servers

e True graph-based builds, so we are never
blocking a build job that should be able to start
immediately

e Just need to register build agents with GitLab

e And then use Unreal Engine Scripts

POINT

Setting up shared storage

e Before we can use this yet, you'll need to have some “shared storage”
e Thisis a normal Windows share on some computer on your network

e Does not matter where it is, as long as all build agents can access it, and it has enough
disk space to store build artifacts

o We'll pretend like you've set up a read-write Windows share at \ \LOKI\ Artifacts for
the rest of this section.

POINT

file://LOKI/Artifacts

How do | use it?

e Setup your .gitlab-ci.yml file so the build server calls:
.\BuildScripts\Generate.psl

e Then tell the build server to start another build using the
generated .game.gitlab-ci.yml file

e Uses the exact same BuildConfig.json file as your local

builds

e In this example, your Windows build agents should be
registered in GitLab with the tag “your-team-windows”

POINT

stages:
- Generate
- Execute

"Generate":
stage: Generate
needs: []
tags:
- your-team-windows
script: |
git submodule update --init BuildScripts
if ($LastExitCode -ne @) { exit $lLastExitCode }

.\BuildScripts\Generate.psl °~
-Engine 5.1 °
-Distribution Game °
-GitlLabYamlPath .game.gitlab-ci.yml ~
-GitLabAgentTagPrefix your-team ~
-WindowsSharedStorageAbsolutePath \\LOKI\Artifacts

artifacts:

paths:

- .game.gitlab-ci.yml

"Execute™:

stage: Execute
needs: ["Generate"]
trigger:
strategy: depend
include:
- artifact: .game.gitlab-ci.yml
job: "Generate"

Benefits so far

e Massively parallelised builds via our GitLab build server
e Retry individual build steps via the GitLab Ul if they fail

POINT

lo Build Monitor

POINT

Problem: GitLab Ul sucks for very complex builds

MR / Generate

©)

Trigger job

@ Mr/s:

Trigger job

Trigger jobr

@ MR [Server

Trigger job

IWYU { Generate IWYU .' Run

Downstream

@ MR / 5.1 Free
#8379

Child

@ MR / Server
#8378
Child
@ MR/ 5.0
#8377
Child
@ MR/ Legecy SDK

#B3T76

©

Child

Assemble HCI st Pre|e<:t

@ CornplLe UnrealEdltGr Mac

@ CornplLe :ljl.rllge:e_lﬁt_j.itor Wing4

@ ComplLe L_.ll_'lre_alGame |05 Development
@ ComplLe L_InrealGame I0S Shipping

@ ComplLe UnrealGame Mac Development

@ CornplLe UnrealGame Mac Shipping

@ Compile UnrealGame Android Development

Problem: GitLab Ul sucks for very complex builds

e Have to click to expand build pipelines to see individual job failures
e Can't see what all the build machines are currently working on (no overall view)
e No progress or estimated time for jobs to complete

e No visibility of test progress

POINT

lo is a better build monitor for GitLab

@ 10 Build Monitor

Dashboard

Pending & In-Progress Pipelines

5

Health History Utilization

Pending & In-Progress Builds

36

Build Machine Working On...
SUSIKENE C EOS Online Subsystem main (6 mins) Execute Main / Free (14 mins) Windows Build Editor Compile UnrealEditor Wing4 (2 mins)
| MOBIUS) R e I] o
C EOS Online Subsystem main (& mins) Execute Main /5.1 (2,163 mins) Create Final Package Create Package (27 secs)
s C EOS Online Subsystem main (6 mins) Execute Main /5.1 (2,163 mins) Create Test Early Packages Create Win64 Test Package (25 secs)
C EOS Online Subsystem main (6 mins) Execute Main / 5.0 (8 mins) Create Final Package Create Package (3 secs)
o C EOS Online Subsystem main (6 mins) Execute Main / Free (14 mins) Compile UnrealEditor Mac (2 mins)
C EOS Online Subsystem main (6 mins) Execute Main / Free (14 mins) Compile UnrealGame Mac Development (2 mins)
Pipeline Status Tests
EOS Online Subsystem (main) @ [Main/4.27
& mins ® |©@®0
|
[Main /5.0
©e0
O
Main /5.1
@1E 001 0O
lo]ele)
O
L Main/Free
Q00
@00
®1
®1
[
[

(o]e]

lo is a better build monitor for GitLab

e View progress and ETAs!
e See what all the build servers are currently doing

e Quickly see all downstream builds without having to click through

e View the status of automation tests as they run:

Tests

(0 OnlineSubsystemEOS. Friends.BlockedPlayersWithBlockThenUnblockWorks

(0 OnlineSubsystemEOS Authentication.CrossPlatformOptionalFlow\Works
Main /5.1

000000000000 00000O00
000000000000 00000O00
Q0000000000000 00000

< Jole
000
< Jole
< Jole
000

00O

POINT

Where can | get it?

https://src.redpoint.games/redpointgames/io-build-monitor

Some guidance on how to install it is on that page, but you will need to have a Kubernetes
cluster and container registry to use the setup scripts that already exist.

You can run it outside Kubernetes if you like; it just needs Redis and PostgreSQL.

POINT

https://src.redpoint.games/redpointgames/io-build-monitor

Benefits so far

e Easily see what all our build servers are doing
e View all ourin-progress build jobs, pipelines and automation tests, with time estimates

POINT

UEFS

POINT

What problems do we still have?

e We can only run one Unreal Engine build per machine at a time, due to the global mutex

e We have to manually install new Unreal Engine versions on all our build agents when we
need them

e Installing or updating Unreal on each machine is slow, 100,000+ files for it to extract

e Multiple UE versions = lots of disk space used

POINT

Is there a better way to package and install Unreal?

e What do we want?
e Single file that contains an Unreal Engine install

e No need to extract, just want to mount the file in-place

e We can do this with VHD disk images!

POINT

Building an Unreal Engine package

e Get UE installed via the launcher on one machine

e Use UEFS to make a packaged version of it:

e Then we can mount that package wherever we want with UEFS:

POINT

Wait, does that mean... ?

e 3 fresh copies of Unreal Engine 5.1
e UAT mutex is per engine installation

e Which means we can run a build job in each of these folders, in parallel

e Solved problem: We can only run one Unreal Engine build per machine at a time, due to
the global mutex

POINT

How do we get these packages around?

e Lots of build servers? Still need a way to sync these VHDs to every machine

e Could just put them on a network share
o But underlying disk reads would be slow (going over network)
> And we'd need to hard-code a path to our specific server in all our build jobs

o This solution does not scale well

POINT

Can we use a container registry?

e Container registries are used by Docker/Kubernetes to version container images
e e.g. Docker Hub is a container registry
e Can we store our VHDs in there and get a versioned tag?

e Yes, turns out you can store whatever you like in container registries (doesn’t have to be a
container image)

POINT

Push a versioned ref to your container registry

(copy ue-5.1.vhd and ue-5.1.vhd.digest to \\LOKI\UnrealEngine)

e Hash the package locally first (necessary for versioning)
e Push areference saying “the file is at \\LOKI\UnrealEngine\ue-5.1.vhd” into the registry

e Could we store the actual VHD in the registry2 Yes, but this is slower for local network scenarios because the
pull would happen over HTTP/S instead of a network share

e So typically you will push refs instead of directly storing the VHD in the container registry

POINT

Push macOS versions into the container registry

e We can also build packages for macOS using UEFS:

e And push them in much the same way

e When the image is pulled, UEFS is smart enough to pick either the VHD or sparse image
based on the current operating system

e So you can use the same tag “registry.yourteam.com/team/unrealengine:5.1” on all
build jobs on all build agent operating systems and get the right result

POINT

How do we get packages from the registry to the build agents?

|II

e Can pre-pull with “vefs pul
e But actually not necessary

e Unreal Engine Scripts support using an engine by UEFS tag, and will automatically pull
and mount the package for the build job as needed:

e Works with Generate.ps1 as well, and thus works on GitLab build agents

POINT

Still need to solve that storage problem though...

e Lots of Unreal Engine packages still means lots of disk space used
e Butdo we actually need all of Unreal Engine?

e Turns out, no, we don't. To launch the editor, you only need about 3gb out of ~100gb
locally on disk.

o Let's virtualise the VHD storage itself.

POINT

How it works prior to storage virtualisation

Container registry

. points to
\\LOKNUnrealEngine\ue-5.1.vhd

(2) copies

(1) looks up

vefs pull

uefs mount

(4) mounts via OS

(3) creates

C:\UnrealEngine\5.1_A

—————— C:\Temp\differencingdiskN.vhd R e < C:\UnrealEngine\5.1_B
OS mount

parent of

|
I
I
I
|
|
|
r
I
|
|
|
I
I
I
|

POINT

How it works prior to storage virtualisation

Container registry

. points to
\\LOKNUnrealEngine\ue-5.1.vhd

(2) copies

(1) looks up

vefs pull

uefs mount

(4) mounts via OS

(3) creates

C:\UnrealEngine\5.1_A

—————— C:\Temp\differencingdiskN.vhd R e < C:\UnrealEngine\5.1_B
OS mount

parent of

|
I
I
I
|
|
|
r
I
|
|
|
I
I
I
|

POINT

Virtualise that VHD

(2) says “uve-5.1.vhd is located at
\\LOKI\UnrealEngine\ue-5.1.vhd”

(1) looks u

vefs-daemon 3§

When told about a mapping,
creates a sparse file and index

o When the OS reads from the VHD
on the VFS, it either serves already

cached data or pulls from \\LOKI

for data it doesn’t have

C:\....\store\ue-5.1.vhd

C:\....\store\ue-5.1.index

POINT

vefs pull

Virtual file system

C:\....\vfs\uve-5.1.vhd

C:\....\vfs\ue-5.2.vhd

P

Container registry

. points fo
\\LOKN\UnrealEngine\ue-5.1.vhd

(3) creates

Fo------- C:\Temp\differencingdisk 1.vhd R e e
parent of OS mount

file://LOKI

Virtualise that VHD

e Datais fetched once in 128kb blocks and stored locally
e Pay the “network access” penalty only once for each 128kb block of data in the package

e Near native performance for already cached blocks
o ~1 min 30 seconds to launch editor from package with no cached blocks

o ~15 seconds to launch editor from package where editor has launched before
e uefs pull and uefs mount are now instant, which makes build jobs start on any machine instantly

e We only store the data we're actually using for each engine install

POINT

What about source engine builds?

e We've solved performance and storage problems for pre-built packaged Unreal Engines
(like the ones we get from the launcher)

e Can we virtualise source-based engines as well2 What does that look like?

e Yes! We can use the same virtual file system infrastructure to virtualise a Git commit.

POINT

Mounting engine Git commits

git@github.com:EpicGames/UnrealEngine

e Still has to do an up-front fetch of commit history

e Butno need for “git checkout”, all files and directories virtualised

e And no need for “GitDependencies”, all binary blobs fetched from CDN on demand

e Can mount as many copies of the source engine as you want, with no additional storage cost

e |Ifthe commit has been previously fetched, mounting a Git commit is instant (no checkout time)

POINT

mailto:git@github.com:EpicGames/UnrealEngine

Where can | get it?

https: //docs.redpoint.games/uvefs/

Docs are a little out of date (you need WinFsp instead of Dokany for virtualised packages).
But overall very simple to install and easy to use.

Lots of active development happening to support future work (which we'll get to in a moment)

POINT

https://docs.redpoint.games/uefs/

Benefits so far

e Version engine packages for Windows and macOS via container registry

e Run multiple Unreal Engine builds at the same time on the same machine, by mounting
the same engine multiple times in different directories

e Need to undo changes to an engine? Just unmount and remount to get a fresh copy

e Mount Unreal Engine instantly over the network on Windows, with no performance hit

e Mount engine commits from GitHub without fetching deps or checking out on

Windows

o Allintegrated into Unreal Engine Scripts so it works “out of the box”

POINT

Future Work: Kubernetes

POINT

State of things right now

e We're in a pretty good place, with performant builds

o Still some environment issues we can’t deal with for parallelisation

o E.g. when Unreal tries to write to stuff in AppData
e Occasionally build servers can go haywire and need fixing/restarting

e Still need to keep all build dependencies up-to-date on each build machine (like VS)

o Manageable with scripts, but still not great for ensuring each build server has the
exact same environment

POINT

State of things right now

e Adding new build machines is not fast or trivial
o Need to add the build machine as a GitLab runner

o Woait for setup/update scripts to install everything like VS, console kits, etc which can
take hours

o Can't really run builds while this is happening in case a build job get scheduled on a
partially configured machine

e Deploying updates to build machines have much of the same problems — can’t do builds
while things are updating

POINT

What we want to have

e Treat the host hardware as just Windows + CPUs/GPUs/memory etc.

e Encapsulate all of our dependencies like Visual Studio into container images

e Do our builds inside containers

e Let Kubernetes do the hard work of scheduling build jobs across all our machines
e Adding a new build machine to the cluster should be simple and fast

o Still need all of our storage virtualisation to work though...

POINT

RKM: Redpoint Kubernetes Manager

e Turns out setting up Kubernetes on Windows nodes is hard and complex

e | made atool called RKM to make setting up Linux+Windows Kubernetes clusters dead
simple

e And by simple | mean you download it and then run at an Administrator/root prompt:

e Getitfrom https://src.redpoint.games/redpointgames/rkm

e Needto runiton a Linux machine first, then all the Windows machines after

POINT

https://src.redpoint.games/redpointgames/rkm

The dream (O

e Instantly start massively parallelised builds in Kubernetes, with any Unreal Engine version
and any project from Git with no download or checkout time

o All dependencies (like VS) snapshotted and stored in container images so they can’t differ
across build machines or randomly break from updates

e Fullisolation of environment so it is impossible for build jobs to conflict with each other on
the same machine

e Parallelise automation tests and Gauntlet tests across machines via Kubernetes

e Maybe even live test game builds in your browser via Pixel Streaming?

POINT

Things that are preventing the dream (and why this is future work)

o X Storage virtualisation for VHDs works, but storage virtualisation for Git commits does
not due to Windows Container issue #335.

e X You need to specifically run Windows 11 Build 22000. Newer versions of Windows
11 are broken as per Windows Container issue #322.

e X Pulling container images from the registry is still slow (Windows base image is 9GB).
Only happens once per build machine which is OK in a bare metal setup, but not viable
in a cloud setup. Can’t use storage virtualisation for container images themselves until
containerd issue #8206 is solved.

POINT

Wrapping Up

POINT

Benefits now & into the future

Simplified build, test and deployment of your games and plugins

More reliable builds locally and on our build servers

Massively parallelised builds via our GitLab build server

Retry individual build steps via the GitLab Ul if they fail

Version engine packages for Windows and macOS via container registry

Run multiple Unreal Engine builds at the same time on the same machine, by mounting the same engine multiple
times in different directories

Need to undo changes to an engine? Just unmount and remount to get a fresh copy
Mount Unreal Engine instantly over the network on Windows, with no performance hit
Mount engine commits from GitHub without fetching deps or checking out on Windows
All integrated into Unreal Engine Scripts so it works “out of the box”

Future:

® Versioning dependencies like Visual Studio via container images
® Using containers to ensure isolated build environments
e Simplified build agent management and distributed builds via Kubernetes

POINT

That’s all folks!

e Unreal Engine Scripts: https://src.redpoint.games/redpointgames/unreal-engine-scripts
e Gitlab: https://about.gitlab.com/install /#ubuntu

e lo Build Monitor: https://src.redpoint.games/redpointgames/io-build-monitor

e UEFS: https://src.redpoint.games/redpointgames /uefs

e RKM: https://src.redpoint.games/redpointgames/rkm

These slides will be available online at junerhodes.au/history soon.

Bug me with questions on Mastodon: @hg@mastodon.social

POINT

https://src.redpoint.games/redpointgames/unreal-engine-scripts
https://about.gitlab.com/install/#ubuntu
https://src.redpoint.games/redpointgames/io-build-monitor
https://src.redpoint.games/redpointgames/uefs
https://src.redpoint.games/redpointgames/rkm
https://junerhodes.au/history/
https://mastodon.social/@hq

	Slide 1: DevOps for Unreal Engine
	Slide 2: Welcome!
	Slide 3: How this presentation is structured
	Slide 4: Unreal Engine Scripts
	Slide 5: What are you using to build today?
	Slide 6: Introducing: Unreal Engine Scripts
	Slide 7: What does the JSON look like?
	Slide 8: Other features of Unreal Engine Scripts
	Slide 9: Where can I get it?
	Slide 10: Benefits so far
	Slide 11: Will this build things in parallel yet?
	Slide 12: GitLab
	Slide 13: Technically any build server will do
	Slide 14: GitLab is open source though
	Slide 15: What does this get us?
	Slide 16: What does this get us?
	Slide 17: Setting up shared storage
	Slide 18: How do I use it?
	Slide 19: Benefits so far
	Slide 20: Io Build Monitor
	Slide 21: Problem: GitLab UI sucks for very complex builds
	Slide 22: Problem: GitLab UI sucks for very complex builds
	Slide 23: Io is a better build monitor for GitLab
	Slide 24: Io is a better build monitor for GitLab
	Slide 25: Where can I get it?
	Slide 26: Benefits so far
	Slide 27: UEFS
	Slide 28: What problems do we still have?
	Slide 29: Is there a better way to package and install Unreal?
	Slide 30: Building an Unreal Engine package
	Slide 31: Wait, does that mean… ?
	Slide 32: How do we get these packages around?
	Slide 33: Can we use a container registry?
	Slide 34: Push a versioned ref to your container registry
	Slide 35: Push macOS versions into the container registry
	Slide 36: How do we get packages from the registry to the build agents?
	Slide 37: Still need to solve that storage problem though…
	Slide 38: How it works prior to storage virtualisation
	Slide 39: How it works prior to storage virtualisation
	Slide 40: Virtualise that VHD
	Slide 41: Virtualise that VHD
	Slide 42: What about source engine builds?
	Slide 43: Mounting engine Git commits
	Slide 44: Where can I get it?
	Slide 45: Benefits so far
	Slide 46: Future Work: Kubernetes
	Slide 47: State of things right now
	Slide 48: State of things right now
	Slide 49: What we want to have
	Slide 50: RKM: Redpoint Kubernetes Manager
	Slide 51: The dream 💭
	Slide 52: Things that are preventing the dream (and why this is future work)
	Slide 53: Wrapping Up
	Slide 54: Benefits now & into the future
	Slide 55: That’s all folks!

